Recipe for Success: 1-Sample Proportions Confidence Interval

- 1. Define parameter p_0 (the population proportion) in context
- 2. Write the Conditions
- Simple Random Sample
- np̂ ≥ 10
- nq̂ ≥ 10
- n is less than 10% of the population $\frac{n}{1}$
- 3. Write the Equation

$$\widehat{p} \pm z^* \sqrt{\frac{(\widehat{p})(\widehat{q})}{n}}$$

4. List the Values	$\hat{p} = \frac{x}{n}$ sample proportion of successes-those that met criteria $\hat{q} = 1 - \hat{p}$ the sample proportion of failures \mathbf{z}^* = the number of standard deviations a value is from the center \mathbf{x} = the number of successes or measured outcomes of interest \mathbf{n} = the size of the sample
5. Calculate z*	 2nd Vars Inverse Norm Area = (1-Confidence level)/2 μ = 0 and σ = 1
6. Plug in the values	
7. Calculate the Interval	 Stat Tests 1-PropZInt x comes from the problem or the data n comes from the problem or the data C-Level Confidence level comes from the problem
8. Write the interval	
9. Write the Conclusion We are% confident that the true population proportion for lies within the interval	
Restate the definition of the ${m p}_0$	

10. Explain the meaning of the confidence level-if asked

In repeated sampling, we expect that this method will capture the true population proportion _______percent of the time. Restate the Confidence Level

Recipe for Success: 1-Sample Proportions Hypothesis Test

- 1. Write the Hypothesis
 - Null $H_0: p_0 =$
 - Alternative H_A: p₀ ≠ or < or >
- 2. Define parameter p_0 in context
- 3. Write the Conditions
- 4. Write the Equation

$$z = \frac{\widehat{p} - p_0}{\sqrt{\frac{(p_0)(q_0)}{n}}}$$

- 5. Draw the graph and Shade H_A
- 6. List & Label all of input values

- Simple Random Sample
- np̂ ≥ 10
- nĝ ≥ 10
- n is less than 10% of the population $\frac{n}{1}$
- z = the number of standard deviations a value is from the center p_0 = the population **proportion** or what is assumed to be true
- $q_0 = 1 p_0$ ($q_0 =$ the expected proportion of failures)
- **n** = the size of the sample
- x = the number of successes
- $\hat{p} = \frac{x}{n}$ sample proportion of successes-those that met criteria
- $\hat{q} = \mathbf{1} \hat{p}$ the sample proportion of failures
 - **p**₀ should be given
 - $q_0 = 1 p_0$
 - x = the number of successes from the sample
 - *n* = the sample size

•
$$\hat{p} = \frac{x}{n}$$

•
$$\hat{q} = \hat{1} - \hat{p}$$

Stat Tests

- 7. Plug values into the equation
- 8. Calculate the z and the p-value
- 1-proportion z-test
- **p**₀ comes from the problem
- x comes from the problem or the data
- n comes from the problem or the data
- Choose \neq or \prec or \rightarrow (using Shaded graph of H_A)

9. State the Decision

- The p-value is_____
- If the p-value is less than alpha, Reject the Null
- If the p-value is greater than alpha, Fail to reject the Null
- 10. Write the Conclusion

Reject the Null: Our p-value is _____. We reject the Null. There is sufficient evidence at alpha = ____ to suggest that the true population proportion for _

Restate $H_A \neq \text{or } < \text{or } > \mathbf{p}_0$

Fail to Reject the Null: Our p-value is ____. We Fail to reject the Null. There is not sufficient evidence at alpha = ____ to suggest that the true population mean for

Restate the definition of the \mathbf{p}_0