Recipe for Success: 1-Sample Proportions
 Confidence Interval

1. Define parameter p_{o} (the population proportion) in context
2. Write the Conditions

- Simple Random Sample
- $n \widehat{p} \geq 10$
- $n \widehat{q} \geq 10$
- n is less than 10% of the population $\frac{n}{.1}$

3. Write the Equation

$$
\widehat{\boldsymbol{p}} \pm \boldsymbol{z}^{*} \sqrt{\frac{(\widehat{\boldsymbol{p}})(\widehat{\boldsymbol{q}})}{\boldsymbol{n}}}
$$

4. List the Values
$\hat{\boldsymbol{p}}=\frac{\boldsymbol{x}}{\boldsymbol{n}}$ sample proportion of successes-those that met criteria $\widehat{\boldsymbol{q}}=1-\hat{\boldsymbol{p}}$ the sample proportion of failures $z^{*}=$ the number of standard deviations a value is from the center $x=$ the number of successes or measured outcomes of interest $n=$ the size of the sample
5. Calculate z^{*}

- $2^{\text {nd }}$ Vars
- Inverse Norm
- Area $=\frac{(1-\text { Confidence level })}{2}$
- $\mu=0$ and $\sigma=1$

6. Plug in the values
7. Calculate the Interval

- Stat Tests
- 1-PropZInt
- x comes from the problem or the data
- n comes from the problem or the data
- C-Level Confidence level comes from the problem

8. Write the interval
9. Write the Conclusion

We are \qquad \% confident that the true population proportion for lies within the interval \qquad .
Restate the definition of the p_{o}
10. Explain the meaning of the confidence level-if asked

In repeated sampling, we expect that this method will capture the true population proportion Restate the Confidence Level percent of the time.

Recipe for Success: 1-Sample Proportions
 Hypothesis Test

1. Write the Hypothesis

- Null $\mathrm{H}_{0}: p_{0}=$
- Alternative $H_{A}: p_{O} \neq$ or < or >

2. Define parameter p_{o} in context
3. Write the Conditions

- Simple Random Sample
- $n \widehat{\mathbf{p}} \geq 10$
- $n \widehat{q} \geq 10$
- n is less than 10% of the population $\frac{n}{.1}$

4. Write the Equation

$$
z=\frac{\widehat{p}-p_{0}}{\sqrt{\frac{\left(p_{0}\right)\left(q_{0}\right)}{n}}}
$$

$z=$ the number of standard deviations a value is from the center $p_{0}=$ the population proportion or what is assumed to be true
$q_{0}=1-p_{0}$ ($q_{0}=$ the expected proportion of failures)
$n=$ the size of the sample
$x=$ the number of successes
$\widehat{\boldsymbol{p}}=\frac{x}{n}$ sample proportion of successes-those that met criteria
$\widehat{\boldsymbol{q}}=1-\widehat{\boldsymbol{p}}$ the sample proportion of failures
5. Draw the graph and Shade H_{A}
6. List \& Label all of input values

- p_{0} should be given
- $q_{0}=1$ - p_{0}
- $x=$ the number of successes from the sample
- $n=$ the sample size
- $\widehat{p}=\frac{x}{n}$
- $\widehat{q}=1-\widehat{p}$

7. Plug values into the equation
8. Calculate the z and the p-value

- Stat Tests
- 1-proportion z-test
- po comes from the problem
- x comes from the problem or the data
- n comes from the problem or the data
- Choose \neq or < or > (using Shaded graph of H_{A})

9. State the Decision

- The p-value is \qquad
- If the p-value is less than alpha, Reject the Null
- If the p-value is greater than alpha, Fail to reject the Null

10. Write the Conclusion

Reject the Null: Our p-value is \qquad . We reject the Null. There is sufficient evidence at alpha = \qquad to suggest that the true population proportion for \qquad
Restate the definition of the p_{0} is \qquad
Fail to Reject the Null: Our p -value is \qquad . We Fail to reject the Null. There is not sufficient evidence at alpha = \qquad to suggest that the true population mean for
is

