Recipe for Success: Confidence Interval for a Paired T-test

1. Define parameter μ_{d} in context
2. Write the Conditions
3. Write the formula for the Test

$$
\bar{x}_{\boldsymbol{d}} \pm \boldsymbol{t}^{*} \frac{s_{d}}{\sqrt{n}}
$$

4. Enter the Data if Given
5. Find \bar{x}_{d}
6. Identify \& label all inputs.
7. Calculate t^{*}
8. Random Sample
9. $n<10 \%$ of the population
10. Differences are independent
11. The differences are Normal or $n>30$

If data is given, draw a boxplot/ histogram-to show normality
$t^{*}=$ the number of standard deviations a value is from
the mean \& is based on the Confidence Level
$\mu_{d}=0$
$\bar{x}_{\boldsymbol{d}}=$ the mean of the sample differences
$s_{d}=$ the standard deviation of the sample differences
$n=$ the number of sample differences

- Stat Edit
- Enter Data in columns $L_{1} \& L_{2}$
- Stat Edit
- At the top of L_{3} type $2^{\text {nd }} L_{1}-2^{\text {nd }} L_{2}$
- \boldsymbol{s}_{d} come from the problem or the data
- \bar{x}_{d} comes from the problem or the data
- n comes from the problem or the data
- $d f=n-1$ ($d f$ is the degrees of freedom)
- $2^{\text {nd }}$ Vars
- Inverse \dagger
- Area $=\frac{(1-\text { Confidence } \text { level })}{2}$
- $d f=n-1$
- STAT
- TESTS
- 8: T Interval

9. Write the Interval
10. Write the Conclusion

We are \qquad \% confident that the true population mean difference for

Restate the definition of the mean differences
11. Explain the meaning of the confidence level-if asked

In repeated sampling we expect this method to capture the true population mean difference for \qquad \% of the time
Restate the definition of the mean differences

Recipe for Success: Hypothesis Test for a Paired T-test

1. Write your Hypothesis

- Null $\mathrm{H}_{0}: \mu_{d}=0$
- Alternative $H_{A}: \mu_{d} \neq$ or < or > 0

2. Define parameter μ_{d} in context \& write the conditions
3. Write the Equation

$$
t=\frac{\bar{x}_{d}-\mu_{d}}{\frac{s_{d}}{\sqrt{n}}}
$$

4. Enter Data (if given)
5. Find \bar{x}_{d}
6. List \& Label all of input values

$$
\begin{aligned}
& n, \bar{x}_{d}, s_{d} \\
& \mu_{d}=0 \& d f=n-1
\end{aligned}
$$

7. Plug values into the equation
8. Calculate the t and the p -value $\mu_{d}=0$
$d f=n-1$
9. Random Sample
10. $n<10 \%$ of the population
11. Differences are independent
12. The differences are Normal or $n>30$

If data is given, draw a boxplot or histogram-to show normality
$t=$ the number of standard deviations a value is from the mean
$\mu_{d}=0$
$\bar{x}_{\boldsymbol{d}}=$ the mean of the sample differences
$\boldsymbol{s}_{d}=$ the standard deviation of the sample differences
$n=$ the number of sample differences

- Stat Edit
- Enter Data in columns $L_{1} \& L_{2}$
- At the top of L_{3} type $2^{\text {nd }} L_{1}-2^{\text {nd }} L_{2}$
- Stat Calc
- 1-Var Stats press Enter
- List type $2^{\text {nd }} L_{3}$
- Stat Tests
- 2:T-Test Enter
- Highlight Data if data is used otherwise highlight STATS
- s_{d} come from the problem or the data
- \bar{x}_{d} comes from the problem or the data
- n comes from the problem or the data
- Choose \neq or < or > (look for key words)
- The p-value is \qquad
- If the p-value is less than alpha, Reject the Null
- If the p-value is greater than alpha, Fail to reject the Null

10. Write the Conclusion

Reject the Null: Our p-value is \qquad . We reject the Null. There is sufficient evidence at alpha = \qquad to suggest that the true population mean differences for

Restate the definition of the mean differences is \qquad
Restate $H_{A} \neq$ or < or > mean differences
Fail to Reject the Null: Our p-value is \qquad . We Fail to reject the Null. There is not sufficient evidence at alpha = \qquad to suggest that the true population mean difference for

