Recipe for Success: Confidence Interval for a Paired T-test

1. Define parameter μ_d in context 2. Write the Conditions	 Random Sample n < 10% of the population Differences are independent The differences are Normal or n > 30 			
	If data is given, draw a boxplot/ histogram-to show normality			
3. Write the formula for the Test $\overline{x}_d \ \pm \ t^* rac{s_d}{\sqrt{n}}$	t * = the number of standard deviations a value is from the mean & is based on the Confidence Level $\mu_d = 0$ \overline{x}_d = the mean of the sample differences s_d = the standard deviation of the sample differences n = the number of sample differences			
4. Enter the Data if Given	 Stat Edit Enter Data in columns L1 & L2 			
5. Find \overline{x}_d	• Stat Edit • At the top of L_3 type $2^{nd} L_1 - 2^{nd} L_2$			
6. Identify & label all inputs.	 s_d come from the problem or the data x̄_d comes from the problem or the data n comes from the problem or the data df= n-1 (df is the degrees of freedom) 			
7. Calculate t*	 2nd Vars Inverse t Area = (1-Confidence level)/2 df = n-1 			
8. Plug in and calculate the Confidence Interval	• STAT • TESTS • 8: T Interval			
9. Write the Interval				
10. Write the Conclusion				
We are% confident tha	t the true population mean difference for			
lies within the interval				
Restate the definition of the mean differences				
11. Explain the meaning of the confidence level-if asked				

In repeated sampling we expect this method to capture the true population mean difference

Recipe for Success: Hypothesis Test for a Paired T-test

- 1. Write your Hypothesis
 - Null $H_0: \mu_d = 0$
 - Alternative $H_A: \mu_d \neq \text{or} < \text{or} > 0$
- 2. Define parameter μ_d in context & write the conditions
- 1. Random Sample
- 2. n < 10% of the population
- 3. Differences are independent
- 4. The differences are Normal or n > 30

If data is given, draw a boxplot or histogram-to show normality

3. Write the Equation

$$t = \frac{\overline{x}_d - \mu_d}{\frac{S_d}{\sqrt{n}}}$$

- 4. Enter Data (if given)
- 5. Find \overline{x}_d
- 6. List & Label all of input values n, \overline{x}_d , s_d $\mu_d = 0$ & df= n-1
- 7. Plug values into the equation
- 8. Calculate the t and the p-value $\mu_d = 0$ df = n-1

- **t** = the number of standard deviations a value is from the mean $\mu_d = 0$
 - \overline{x}_d = the mean of the sample differences
 - s_d = the standard deviation of the sample differences
 - **n** = the number of sample differences
 - Stat Edit
 - Enter Data in columns L1 & L2
 - At the top of L_3 type $2^{nd} \ L_1$ $2^{nd} \ L_2$
 - Stat Calc
 - 1-Var Stats press Enter
 - List type 2nd L₃
 - Stat Tests
 - 2:T-Test Enter
 - Highlight Data if data is used otherwise highlight STATS
 - s_d come from the problem or the data
 - \overline{x}_d comes from the problem or the data
 - **n** comes from the problem or the data
 - Choose ≠ or < or > (look for key words)

9. State the Decision

- The p-value is_____
- If the p-value is less than alpha, Reject the Null
- If the p-value is greater than alpha, Fail to reject the Null

10. Write the Conclusion

Reject t	he Null:	Our p-value is _	We reject the Null.	There is sufficient	evidence at
----------	----------	------------------	---------------------	---------------------	-------------

alpha = _____ to suggest that the true population mean differences for

Restate the definition of the mean differences Restate $H_A \neq \text{or } < \text{or } > \text{mean differences}$

is

Fail to Reject the Null: Our p-value is _____. We Fail to reject the Null. There is not sufficient evidence at alpha = ____ to suggest that the true population mean difference for

is _