Recipe for Success: 1 Sample T-Distribution Confidence Interval for Means σ is unknown

1.	Define the parameter μ in context	
2.	Write the Conditions	 Random Sample n < 10% of the population Normal Population or n ≥ 30 If data is given, draw a boxplot or histogram-to show normality
3.	Write the Equation $\overline{x} \pm t^* \left(\frac{s}{\sqrt{n}} \right)$	\mathbf{t} = the number of standard deviations a value is from the mean \overline{x} = the mean of the sample. \mathbf{s} = the standard deviation of the sample \mathbf{n} = the size of the sample
4.	Graph and Shade	
5.	Enter the Data if Given	 Stat Edit Enter Data in column L1 2nd Quit Stat Calc 1-Var Stats: \$\overline{x}\$, \$s_x\$, \$n
6.	Identify and label all inputs	 s comes from the problem or the data \$\overline{x}\$ comes from the problem or the data n comes from the problem or the data df = n-1
7.	Calculate t*	 2nd Vars Inverse † Area = (1-Confidence level)/2 df = n-1
8.	Plug in the values	• u j - n-1
9.	Calculate the Interval	 Stat Tests 8:T Interval Highlight Stats (Highlight Data if data is given) \$\overline{x}\$ comes from the problem or the data \$s_x\$ come from the problem or the data \$n\$ comes from the problem or the data Inter the confidence level
10	. Write the Interval	
11	. Write the Conclusion	
	We are% confident that	
	lies within the interval	Restate the definition of the mean
12	. Explain the meaning of the confid	dence level-if asked
		that this method will capture the true population mean cent of the time.

Restate the Confidence Level

Recipe for Success: 1 Sample T-Distribution Hypothesis Test for Means σ is unknown

Hypothesi	s Test for Means σ is unknown
 Write your Hypothesis Null H₀: μ = Alternative H_A: μ ≠ or < or > Define the parameter μ in context Write the Conditions 	 Random Sample n < 10% of the population Normal Population or n > 30 If data is given, draw a boxplot or histogram-to show normality
4. Write the Equation $oldsymbol{t} = rac{\overline{x} - \mu}{rac{s}{\sqrt{n}}}$	t = the number of standard deviations a value is from the mean μ = the mean of the population or what is assumed to be true \overline{x} = the mean of the sample. s = the standard deviation of the sample s = the size of the sample
5. Draw the graph and Shade6. Enter Data (if given)	 Stat Edit Enter Data in column L1 2nd Quit Stat Calc 1-Var Stats: x̄, s_x, n
7. List & Label all of input values8. Plug values into the equation	T var Grais. X, S _{X,} II
9. Calculate the t and the p-value df= n-1 (df is the degrees of freedom)	 Stat Tests 2:T-Test Enter Highlight Stats (Highlight Data if data is given) μ comes from the problem x̄ comes from the problem or the data s_x come from the problem or the data n comes from the problem or the data Choose ≠ or < or > (use Shaded graph of H_A)
10. State the Decision	 The p-value is If the p-value is less than alpha, Reject the Null If the p-value is greater than alpha, Fail to reject the Null
11. Write the Conclusion	
•	We reject the Null. There is sufficient evidence at population mean foris
Restate H _A ≠ or < or > mean	Restate the definition of the
Fail to Reject the Null: Our p-value is	We Fail to reject the Null. There is not sufficient

Restate the definition of the mean

evidence at alpha = ___ to suggest that the true population mean for

_is __

Restate $H_A \neq \text{or } < \text{or } > \text{mean}$