Recipe for Success: 1 Sample T-Distribution
Confidence Interval for Means σ is unknown

1. Define the parameter μ in context
2. Write the Conditions
3. Write the Equation

$$
\bar{x} \pm t^{*}\left(\frac{s}{\sqrt{n}}\right)
$$

4. Graph and Shade
5. Enter the Data if Given
6. Identify and label all inputs
7. Calculate t^{*}
8. Plug in the values
9. Calculate the Interval
10. Random Sample
11. $n<10 \%$ of the population
12. Normal Population or $n \geq 30$

If data is given, draw a boxplot or histogram-to show normality
$t=$ the number of standard deviations a value is from the mean
$\bar{x}=$ the mean of the sample.
$\mathrm{s}=$ the standard deviation of the sample
$n=$ the size of the sample

- Stat Edit
- Enter Data in column L1
- 2nd Quit
- Stat Calc
- 1-Var Stats: $\overline{\boldsymbol{x}}, \boldsymbol{s}_{\boldsymbol{x}}, \mathbf{n}$
- s comes from the problem or the data
- \bar{x} comes from the problem or the data
- n comes from the problem or the data
- $d f=n-1$
- $2^{\text {nd }}$ Vars
- Inverse \dagger
- Area $=\frac{(1-\text { Confidence level })}{2}$
- $d f=n-1$
- Stat Tests
- 8:T Interval
- Highlight Stats (Highlight Data if data is given)
- \bar{x} comes from the problem or the data
- s_{x} come from the problem or the data
- n comes from the problem or the data
- Inter the confidence level

10. Write the Interval
11. Write the Conclusion

We are \qquad \% confident that the true population mean for lies within the interval \qquad .

Restate the definition of the mean
12. Explain the meaning of the confidence level-if asked

In repeated sampling, we expect that this method will capture the true population mean percent of the time.

Recipe for Success: 1 Sample T-Distribution
 Hypothesis Test for Means σ is unknown

1. Write your Hypothesis

- Null Ho: $\mu=$
- Alternative $H_{A}: \mu \neq$ or < or >

2. Define the parameter μ in context
3. Write the Conditions
4. Write the Equation

$$
t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}
$$

5. Draw the graph and Shade
6. Enter Data (if given)
7. List \& Label all of input values
8. Plug values into the equation
9. Calculate the t and the p-value

$$
d f=n-1
$$

($d f$ is the degrees of freedom)

10. State the Decision

11. Write the Conclusion

Reject the Null: Our p-value is \qquad . We reject the Null. There is sufficient evidence at alpha = \qquad to suggest that the true population mean for \qquad is
Restate the definition of the

1. Random Sample
2. $n<10 \%$ of the population
3. Normal Population or $n>30$

If data is given, draw a boxplot or histogram-to show normality
$t=$ the number of standard deviations a value is from the mean
$\mu=$ the mean of the population or what is assumed to be true
$\bar{x}=$ the mean of the sample.
$s=$ the standard deviation of the sample
$n=$ the size of the sample

- Stat Edit
- Enter Data in column L1
- 2nd Quit
- Stat Calc
- 1-Var Stats: $\overline{\boldsymbol{x}}, \boldsymbol{s}_{\boldsymbol{x}}, \mathbf{n}$
- Stat Tests
- 2:T-Test Enter
- Highlight Stats (Highlight Data if data is given)
- μ comes from the problem
- \bar{x} comes from the problem or the data
- s_{x} come from the problem or the data
- n comes from the problem or the data
- Choose \neq or < or >
(use Shaded graph of H_{A})
- The p-value is \qquad
- If the p-value is less than alpha, Reject the Null
- If the p-value is greater than alpha, Fail to reject the Null
Restate $H_{A} \neq$ or < or > mean

Fail to Reject the Null: Our p-value is ___. We Fail to reject the Null. There is not sufficient evidence at alpha = \qquad to suggest that the true population mean for

