Recipe for Success: 2 Sample T-Confidence Intervals

- 1. Define $\mu_1 \& \mu_2$ in context
- 2. Write the Conditions
- 1. Both samples are random
- 2. n < 10% of the population
- 3. Populations are independent
- 4. Normal Population or n > 30
- If data is given, draw a boxplot or histogram-to show normality

3. Write the formula for the Test

$$\overline{x}_1 - \overline{x}_2 \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

- $\overline{x}_1 \& \overline{x}_2$ = the means of the samples
- $s_1 \& s_2$ = the standard deviation of the sample
- $\mathbf{n}_1 \ \mathbf{\&} \ \mathbf{n}_2$ = the size of the sample

- 4. Graph and Shade
- 5. Enter the Data if Given
- Stat Edit
- Enter Data in columns $L_1 \& L_2$
- 2nd Quit
- Stat Calc
- 1-Var Stats L₁: \bar{x}_1 , s_1 , n_1 and L₂: \bar{x}_2 , s_2 , n_2
- 6. List & Label all of input values Stat Tests \overline{x}_1 , s₁, n₁, \overline{x}_2 , s₂, n₂, df

 - 0:2-Samp T Int

df (comes from the calculator)

- Highlight Data if data is used otherwise highlight STATS • $s_1 \& s_2$ comes from the problem or the data
- $\overline{x}_1 \& \overline{x}_2$ comes from the problem or the data
- n1 & n2 comes from the problem or the data
- pooled highlight no

7. Calculate t^*

- 2nd Vars
- Inverse t
- Area = $\frac{(1-Confidence\ level)}{2}$
- **df** (comes from the calculator in the step above)

- 8. Plug in the values
- 9. Write the interval
- 10 Write the Conclusion

We are _____% confident that the true population mean difference for_____

Restate the definition of the μ_1

lies within the interval _____ and Restate the definition of the μ_2

11. Explain the meaning of the confidence level-if asked

In repeated sampling we expect this method to capture the true population mean difference

for _____ and _____ Restate the definition of the μ_1 Restate the definition of the μ_2

% of the time

Recipe for Success: 2-Sample T Hypothesis Test (difference of Means)

- 1. Write the Hypothesis
 - Null **H**₀: $\mu_1 = \mu_2$
 - Alternative $H_A: \mu_1 \neq \mu_2$ or $\mu_1 < \mu_2$ or $\mu_1 > \mu_2$
- **2.** Define $\mu_1 \& \mu_2$ in context
- 3. Write the Conditions
- 4. Write the Equation

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- 5. Enter Data (if given)
- 6. List & Label all of input values \overline{x}_1 , s₁, n₁, \overline{x}_2 , s₂, n₂

df (comes from the calculator)

- 1. Both samples are random
- 2. n < 10% of the population
- 3. Populations are independent
- 4. Normal Population or *n > 30*

If data is given, draw a boxplot or histogram-to show normality

- t = the number of standard deviations from the mean
 - μ_1 & μ_2 = the means of the population (may be assumed)
 - \overline{x}_1 & \overline{x}_2 = the means of the samples
 - $s_1 \& s_2$ = the standard deviation of the sample
 - $\mathbf{n}_1 \ \mathbf{\&} \ \mathbf{n}_2$ = the size of the sample
 - Stat Edit
 - Enter Data in columns $L_1 \& L_2$
 - 2nd Quit
 - Stat Calc
 - 1-Var Stats L₁: \bar{x}_1 , s₁, n₁ and L₂: \bar{x}_2 , s₂, n₂
 - Stat Tests
 - 4: 2-SampTTest Enter
 - Highlight Data if data is used otherwise highlight STATS
 - \bullet s_1 & s_2 comes from the problem or the data
 - \overline{x}_1 & \overline{x}_2 comes from the problem or the data
 - \bullet n_1 & n_2 comes from the problem or the data
 - pooled highlight no
 - Choose ≠ or < or > (look for key words)

The T and the p-value are calculated in step 5

- 7. Plug values into the equation
- 8. Write the t and the p-value
- 9. State the Decision
- The p-value is_____
- compare to alpha: p-value (< or >) alpha
- If the p-value is less than alpha, Reject the Null
- If the p-value is greater than alpha, Fail to reject the Null

10. Write the Conclusion

Reie	ct the Null:	Our p	-value is	We	reject the Null.	There	is	sufficient	evidence	at

alpha = ____ to suggest that the difference in the true population mean for

Restate the definition of the 1st mean $Restate H_A \neq or < or > 2nd mean definition$

Fail to Reject the Null: Our p-value is _____. We Fail to reject the Null. There is not sufficient evidence at alpha = _____ to suggest that the difference in true population mean for