\qquad

Introduction to Statistics

Welcome to Statistics. For those of you who thought that you were signing up for a math class, I feel that I should make you aware that I really do not consider statistics a math class. I consider statistics a class that uses math much like some of the science classes utilize math. In statistics, like science, we test hypotheses through the design and completion of observational studies and experiments.

Okay so you are asking yourself, if statistics is not really a math course what is it and why is it important?

First, I will address the question: Why is statistics important? It is important because I said it is. I am guessing that my answer didn't satisfy many or any of you. Okay, so how about this: How do you think Amazon grew to be so huge and powerful when it started out as online book store? The answer their use of statistics. How do you think that Japan became a major manufacturing power known for high quality automobiles when their country and industry was virtually destroyed by a world war? The answer is statistics. How do you think a baseball team with the lowest salary base became a divisional champion? The answer is statistics. How did a group of MIT nerds get banned from Las Vegas? The answer is statistics. How was an effective HIV screening test created from one that was completely unreliable? The answer is statistics. How are advertisements selected for your computer screen or smartphone? The answer is statistics. How did Target know that a teenage girl that they had never seen was pregnant before her father did? The answer is statistics.

Let's explore the story about Target and the teenage pregnancy in a little more detail.

The background: To make better use of their advertising budget, Target began utilizing statistics to better identify the purchasing patterns of their customers so that they could send advertisements that might be of greater interest to each customer. In other words, based on what a person purchased, Target was sending advertisements and coupons to them for things that Target was predicting that the customer would want to purchase.

To that end a teenage girl was receiving advertisements for baby items. As a result an angry father walked into a Target outside of Minneapolis demanding to talk to the manager: "My daughter got this in the mail!" he said. "She's still in high school, and you're sending her coupons for baby clothes and cribs? Are you trying to encourage her to get pregnant?"

The manager didn't have any idea what the man was talking about. He looked at the mailer. Sure enough, it was addressed to the man's daughter and contained advertisements for maternity clothing, nursery furniture and pictures of smiling infants. The manager apologized and then called a few days later to apologize again. On the phone, though, the father was somewhat abashed. "I had a talk with my daughter," he said. "It turns out there's been some activities in my house I haven't been completely aware of. She's due in August.

The Complete article can be found: http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/

A closely related article and interview of the Target advertising Mastermind:
https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html?pagewanted=6\&_r=1\&hp
\qquad

What is Statistics?

So now that you are a little curious, let's answer the question: What is Statistics?
Statistics is the study of how to collect, organize, display, describe, and analyze the data from a sample in order to make generalizations about a population.

I am certain that some or many of you are thinking, great another definition that my teacher believes explains everything, but in reality it leaves more questions than answers. To which I must respond, fair enough, but give me a few more minutes and I believe that I will be able to break down the definition and give you an overview of the course at the same time.

Statistics is divided into 4 major sections:

- Collecting Data,
- Displaying and Describing the Collected data
- Analyzing the Collected Data (Probability)
- Making inferences/decision based on the data collected.

The First Quarter will be devoted to Collecting Data and Displaying and Describing data. These two sections are the easiest sections of the course and it is imperative that you achieve really good grades in both of these sections for two major reasons. First, the collection of data is foundational to all other sections of the course and secondly the $2^{\text {nd }}$ quarter which is comprised almost entirely of data analysis, (the probability section) is the most challenging for students. Yes, most students say probability is the hardest and their second quarter grades tend to be lower than that of their first quarter. The final section of the course, making inferences, is where you actually get to make decisions based on data. Should we purchase the new machine, is the new drug more effective than the old one, can blank predict blank and with how much confidence.

I love the section on inferences and I feel it is empowering, because it is from this section that I can use all of the collected data to make an informed decision and not just a guess. Now I want to be perfectly clear about the word guess. Nothing in statistics is certain, however, with statistics I am able to determine the chance that I could be wrong. Typically I will choose to be correct 95% of the time. Which means that I accept the probability that I will be wrong about 5% of the time-but I am getting ahead of myself as these discussions will not occur in detail until the $3^{\text {rd }}$ quarter.

As we begin this course, I should warn you that there are a significant number of definitions that must be learned in order to understand what we are trying to accomplish. So how important are the definitions? Very important-put it this way, there will be some tests where you will not need to perform any mathematical calculations. This isn't to say that those tests are easy, it is just a recognition that statistics is different from all of the math classes you have taken thus far.

Incidentally, the first few test are challenging for most students, not because the topics are difficult, but because you are being asked to think and reason in a different manner. In previous math classes, you followed an explicit set of directions to find a solution to a problem. In statistics, you will be expected to not only know and apply the definitions and methods, but be able to relate them to the outside world. In fact, the more you know about the world and other subjects, the more connections you will be able to make and the more successful you will be in this course.
\qquad

Basic Vocabulary

Statistics is the study of how to collect, organize, display, describe, and analyze the data from a sample in order to make generalizations about a population.

To fully understand what this means, we need to understand the concept and importance of both a population and a sample. (we will briefly define and discuss sample shortly and in more detail next week)

Population: the entire group of subjects or individuals that is the subject of interest.
Parameter-a numerical measurement of a population (rarely known).
Census-the collection of data from each unit in the population.
(Difficult if not impossible with a large population)
In statistics, a population is the entire group of subjects or individuals that is the subject of interest while a sample is a subset of the population. For example: we may be interested in the percentage of students in your statistics class that have brown eyes. In that case, our population would be the students in your statistics class and it would be fairly easy to count and figure out the percentage of brown eyed students in the class. The percentage of brown-eyed students would be the parameter. Because we are checking the eye-color of the entire population, every student in the classroom, we are conducting a census.

The great thing about being able to conduct a census, is that we know the true population parameter. In this case, we would know the true proportion or percentage of students with brown eyes in the classroom. According to some of my students, the best part of being able to conduct a census knowing the true population parameter is that there is no need for statistical methods and no need for this class.

So why not perform a census all of the time? To that answer that question let's consider the percentage of students with brown-eye color scenario. What if my population of interest is not the students in my classroom but all of the students at Reagan? While counting that many students might be a challenge, and I might creep a few people out when I asked them for their eye color, it is probably still doable. However what if we wanted to know the percentage of people in San Antonio or the world who had brown eyes? Well then our population would be all of San Antonio or the world and it would be unrealistic to conduct a census count all of the brown eyed people in San Antonio or the world.

Why don't we always collect data using a census?

1. Sometimes it is impossible to conduct a census.

- I cannot find the average size of bass in a particular lake without draining the lake at which point the bass is dead and there is no lake.
- I cannot count the number of red blood cells in your body, without removing all of the blood from you and sucking your life away.

2. A census can be extremely expensive

The 2010 U.S census cost $\$ 13$ billion, approximately $\$ 42$ person-your tax dollars at work.
3. Due to the difficulty in execution, a census can very inaccuarate

- In the 2000 census, it is estimated that 6.4 million Americans were missed, however, there was an overcount of 36,000 . Now how did that happen?
- In 2010, it is estimated that in Hildalgo county in Texas 225,000 persons were not counted.
\qquad

Basic Vocabulary

So while an accurate census is great, it is not always possible and may be cost prohibitive. In the event that it is not plausible to conduct a census, we are forced to settle for an estimate. So the questions is how do we make an accurate estimate

Samples: are a subset of the population. In non-math terms, a sample is just a smaller group of the entire population.

For instance: If the population of interest is the students in a high school a sample might be the group of students in a particular classroom or at a lunch table. Any subset (small group) of the population is a sample. It is possible to have samples of size 1 or massive samples of thousands. Any subset or small group of the population is a sample. However, not all samples are created equally. Some samples are good and some are not.

Good Samples: To be a good sample, the sample needs to look like the population. I like to say that a sample is a microcosm of the population. In other words, a good sample should look just like the population but smaller. It is a mirror image or photograph of the population. It looks the same only smaller.

So, what is a bad sample? A bad sample is a sample that does not proportionally represent the elements of the population. A sample that does not proportionally represent all of the elements of a population is said to be biased.

Biased Sample: A sample that over or under-represents a part of the population. We will spend a great deal amount of time discussing bias in detail in about a week.

Randomness: One of the key ingredients to collecting a good sample is randomness. In other words we need to randomly select the sample from the population because we when we design studies we are unable to control for all of the different variables, but because we all have hidden biases we cannot use our best judgement. Yup, I just said you were biased. Don't believe me let's look at our opening activity.

So when you entered class today, I had you do something very simple, and had you select one number from a display like this: Please do so no if you have not already

\qquad

How many of you chose: 1. \qquad 2. \qquad 3. \qquad 4.

According to psychologists, typically, about 75% of the population chooses 3,20\% are divided between 2 and 4 and 5\% choose 1.

Because there are 4 numbers, each number should be chosen 25% of the time. So why didn't that happen. I don't know why and several theories have been published. However, regardless of the reason, this shows that in general we make biased selections and in statistics biased samples result in samples that are not representative of the population and are therefore worthless.

However, if I had rolled a 4 sided die a million times about each number would have been selected about 25% of the time.

Believe it or not this actually has very practical applications to you especially when you return to campus. You don't think so?

Consider this: You go to the bathroom and there are three stalls. Assuming the bathroom is empty, which stall do you normally choose? For the vast majority of people, the answer is the second stall or middle stall which makes it the grossest and least clean stall of all. The next most chosen stall is the third stall which is the furthest one from the door. Assuming we are concerned about germs, hygiene etc. we should be choosing the first stall. Who knew that stats class would be so helpful with toilet training?

In the scenarios above we exhibited a bias. We over-represented the number 3 and the $2^{\text {nd }}$ stall and we significantly under-represented the number 1 and the $1^{\text {st }}$ stall. To have samples that are useful, we must eliminate bias through the design and execution of our studies and experiments.

Summary: The key point is that we must design studies in a manner that selects samples that are representative of the population. We must not over or under-represent segments of the population and to account for variables beyond the control of the study we must employ randomness.
\qquad

As mentioned earlier an accurate census is great, however, it is not always possible and may be cos \dagger prohibitive. In the event that it is not plausible to conduct a census, we are forced to settle for an estimate. So the question is, how do we make an accurate estimate. Essentially we have two choices, we can take a sample or we can run a simulation. We will discuss in great detail how to utilize sample data, but we are going to begin with learning how to conduct a simulation.

Simulation: a way to model random events, such that simulated outcomes closely match real-world outcomes. By observing simulated outcomes, researchers gain insight on the real world.

- Chance/randomness must be employed
- Often Used because it is more economical than running a true experiment
- Typically a probability model can be used to generate the same information
- We Want things to be fair and without bias or prejudice in our method of selection

Random: An event in which we know what possible outcomes can occur but do not which outcome actually will take place.

Component: The most basic situation in which something happens at random-(Hint: the singular event that you are repeating)

Outcome: the result of a single component
Trial: The number of components necessary to occur to model a situation. A single run of sequence of events being simulated

Response Variable: variable that measures the outcome of each trial; outputs (Y's)
Question 1: How many heads would I get if I flipped a fair coin 8 times?
Are you certain? Will that happen every time? Because of uncertainty we need to conduct studies which we will do this time as a simulation.

While there are several steps to running a simulation let's begin with just part of the process to answer the above question

Assign 2 digit numbers in proportion to the chance of success and failure.

- $00=0$ or $100 ; 01=1 ; 02=2 ; 03=3 \ldots 09=9$
- $10=10 ; 11=11 \ldots 99=99$
- Assign the numbers to be skipped or ignored
- We will flip the coin until we have 4 heads.
- We will repeat the simulation 3 times.

52822	48990	03648	34861	54680	64791
31645	45552	78255	64794	21228	69707
38804	45687	85320	54654	76156	01853

Recipe for Success: Simulations

1. Read the entire problem
2. Identify the Question
3. Identify and define a success and component in context
4. Identify a Trial
5. Model the simulation
6. Address Duplications
7. Explain how to run the simulation
8. Run the simulation \& Make a Table

Trial Number	Number of 2 Digit Values Counted (successes)
1	
2	
3	
	Total

9. Calculate the Expected number

What is being asked?
Explain what the question is asking in your own words

- Success: What we want to happen
- Component: What is being repeated

How many successes are required?
Assign 1 or 2 digit numbers in proportion to the chance of success and failure.

- $00=0$ or $100 ; 01=1 ; 02=2 ; 03=3$... $09=9$
- $10=10 ; 11=11$... $99=99$
- Assign the numbers to be skipped or ignored

Are repeats permitted: Can something occur twice?

- Percentages-usually can be duplicated
- Specific items-usually cannot be duplicated (Occurs when the quantities of items are known)

1. Explain how to run a trial

- Beginning from left to right I would select 1 or 2 digit numbers until there were \qquad number of successes.
- Count how many 1 or 2 digit values that were not skipped.

2. Tell how many trials are going to be run
3. Find the average/mean of all the trials

- Draw a line through the values that represent failures
- Circle the values that represent successes
(Do not forget about duplicates are they permitted or not)
- Mark an X through Skips
(These are numbers that are not possible-
for instance when duplicates are not permitted)
- Draw a vertical line at the end of a trial
- Count the number of 2 digit numbers in the trial
- Record the values in a table
- Repeat for all necessary trials to complete the simulation

Take the average/Mean
Sum the number of successes counted for each trial

- Divide by the number of trials

Conclusion:

Based on the simulation above, on average we would expect to have

Notes: Simulations Scenarios

Scenario 1 (Coupons): Every Monday a local radio station gives coupons away to 50 people who correctly answer a question about a news fact from the previous day's newspaper. The coupons given away are numbered from 1 to 50 , with the first person receiving coupon 1, the second person receiving coupon 2, and so on, until all 50 coupons are given away. On the following Saturday, the radio station randomly draws numbers from 1 to 50 and awards cash prizes to the holders of the coupons with these numbers. Numbers continue to be drawn without replacement until the total amount awarded first equals or exceeds $\$ 300$. If selected, coupons 1 through 5 each have a cash value of $\$ 200$, coupons 6 through 20 each have a cash value of $\$ 100$, and coupons 21 through 50 each have a cash value of $\$ 50$.
(a) Explain how you would conduct a simulation using the random number table provided below to estimate the distribution of the number of prizewinners each week.
(b) Perform your simulation 3 times. (That is run 3 trials of your simulation.) Start at the leftmost digit in the first row of the table and move across. Make your procedure clear so that someone can follow what you did. You must do this by marking directly on or above the table. Report the number of winners in each of your 3 trials.

| 72749 | 13347 | 65030 | 26128 | 49067 | 02904 | 49953 | 74674 | 94617 | 73317 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 81638 | 36566 | 42709 | 33717 | 59943 | 12027 | 46547 | 61303 | 46690 | 76423 |

\qquad

Simulations (Running \& Assigning)

A cereal manufacturer puts pictures of famous athletes on cards in boxes of cereal. 20\% of the boxes contain Katie Ladecky, 30\% of the boxes contain Michael Phelps and 50\% of the boxes contain Simone Biles.

Assign 2 digit numbers in proportion to the chance of success and failure.

- $00=0$ or $100 ; 01=1 ; 02=2 ; 03=3 \ldots 09=9$
- $10=10 ; 11=11$... $99=99$
- Assign the numbers to be skipped or ignored

How many boxes of cereal would you expect to buy in order to get 3 Katie Ladecky Cards?

52822	48990	03648	34861	54680	64791
31645	45552	78255	64794	21228	69707

How many boxes of cereal would you expect to buy in order to get 4 Michael Phelps Cards?

52822	48990	03648	34861	54680	64791
31645	45552	78255	64794	21228	69707

How many boxes of cereal would you expect to buy in order to get 4 Simone Biles Cards?

52822	48990	03648	34861	54680	64791
31645	45552	78255	64794	21228	69707

Recipe for Success: Simulations

1. Read the entire problem
2. Identify the Question
3. Identify and define a success and component in context
4. Identify a Trial
5. Model the simulation
6. Address Duplications
7. Explain how to run the simulation
8. Run the simulation \& Make a Table

Trial Number	Number of 2 Digit Values Counted (successes)
1	
2	
3	
	Total

9. Calculate the Expected number

What is being asked?
Explain what the question is asking in your own words

- Success: What we want to happen
- Component: What is being repeated

How many successes are required?
Assign 1 or 2 digit numbers in proportion to the chance of success and failure.

- $00=0$ or $100 ; 01=1 ; 02=2 ; 03=3 \ldots 09=9$
- $10=10 ; 11=11$... $99=99$
- Assign the numbers to be skipped or ignored

Are repeats permitted: Can something occur twice?

- Percentages-usually can be duplicated
- Specific items-usually cannot be duplicated (Occurs when the quantities of items are known)

4. Explain how to run a trial

- Beginning from left to right I would select 1 or 2 digit numbers until there were \qquad number of successes.
- Count how many 1 or 2 digit values that were not skipped.

5. Tell how many trials are going to be run
6. Find the average/mean of all the trials

- Draw a line through the values that represent failures
- Circle the values that represent successes
(Do not forget about duplicates are they permitted or not)
- Mark an X through Skips
(These are numbers that are not possible-
for instance when duplicates are not permitted)
- Draw a vertical line at the end of a trial
- Count the number of 2 digit numbers in the trial
- Record the values in a table
- Repeat for all necessary trials to complete the simulation

Take the average/Mean
Sum the number of successes counted for each trial

- Divide by the number of trials

Conclusion:

Based on the simulation above, on average we would expect to have
\qquad

Notes: Simulations Scenarios

Scenario 2 (Oil Wells): Suppose the probability that an exploratory oil well will strike oil is about 0.2. Conduct a simulation to answer the following questions. Assume that the outcome (oil or no oil) for any one exploratory well is independent of outcomes from other wells. Use the random number table below and conduct 20 trials. Clearly identify each trial on the table.
(a) Describe the simulation and estimate the average number of wells that need to be drilled in order to strike oil.
(b) What is the probability that it will take fewer than 3 attempts to strike oil?
(c) What is the probability that it will take exactly 6 wells to strike oil?

47169	80410	03333	73856	85627	54351
36653	55390	20439	48605	45513	05458
76361	47409	14914	55280	70533	52960
20579	87054	59998	90071	67554	91237
96994	65965	73235	49260	45309	24660
92048	08676	72653	87342	19084	33780
37592	96361	18246	36121	14888	23329
08032	20831	98314	93521	24035	43186

Notes: Samples

While economical, easy to run, and unbiased, simulations have 2 major limitations.

1. To run a simulation we must know something about the population. We must know the population parameter of interest. For instance, in the oil well simulation, we needed to know the percentage of time that we expected to strike oil. Unfortunately, much of the time we often don't know anything about the population. We don't know the percent of deformed blood cells in your body; we don't know what percent of the population supports a candidate.
2. Simulations do not allow us to test whether or not the claimed percentage of successes is correct. When running a simulation we are forced to assume that the percentage of successes is correct. The oil well simulation problem claimed that we struck oil twenty percent of the time, but what if the percentage had been different than 20 percent and we the drilling company were unaware of the true percentage of successful wells? We assumed that the drilling company would strike oil twenty percent of the time and used that value in our simulation. However, simulations do not provide a mechanism to determine whether or not this was actually the case.

So the question is: what do we do when we don't know a population parameter and conducting a census is not appropriate? The answer is: take a sample. Well that sounds simple enough, but leads us to the next question: What is a sample? A sample is merely a subset of the population.

Scenario: If I wanted suggestions for a theme song for this year's Reagan students, instead of performing a census and asking all of the students at Reagan for their suggestions, I could take a sample or subset of Reagan students. Since a sample is a subset of the population there are several ways to go about finding a subset.

1. I could ask twenty-five students sitting together in the lunch room.
2. I could ask my freshmen advisory and ask for their idea of the theme song.
3. I could go into the Teacher's lounge and get suggestions for the song there.
4. I could attend the PTA meeting and ask for their suggestions.

So which of those methods would you suggest I use and how do you feel about them?
I am going to go out on a limb here and guess that you don't really like any of those methods. I am betting that you are concerned that your opinion for the Reagan Theme Song may not be represented.

While samples can be an excellent way to make determinations about a population, samples must be representative of the entire population. So the question is: how do we take a "good sample."

First, I want to stress again that a good sample is one that is representative of the population. While that may seem obvious, it isn't as easy to do as one may think. If you are having trouble believing me, consider who I should ask about choosing a theme song for Reagan and give me a list of those people.

Summary:

- A sample is a portion of a population which is studied to draw conclusions \& about the characteristics of the whole population.
- A sample must be representative of the population to be useful.
- No conclusions should be drawn from poorly collected data or badly designed experiments or studies.
\qquad

Bias is the result of a bad study design and is sometimes referred to as selection bias, because the sample we selected is biased, that is to say that the selected sample does not represent the population.

As we stated earlier, biased data is absolutely useless and we have no methods to fix data that is not representative of the population of interest. If we happen to collect a biased sample, then we must discard it, start over and collect another sample.

In order to avoid collecting a biased sample, it is important to recognize the types of bias that exist so that we can create data collection methods that prevent the introduction of biased data into our sample.

Common types of statistical bias are:
Under-coverage Bias-Occurs when members of a population are not able to be selected or chosen for a sample because they are not able to be accounted for (homeless, inmates, no land-line, college students). It is desirable to have a listing of the population and then randomly select individuals from the listing for the sample. Obviously, the sample is only as good as the listing of the population and in this case the above mentioned groups are often left off of population lists.

Non-response Bias-Occurs when a member in the population is randomly identified and selected but refuses to participate in the poll or chooses not to return the survey or they were called but chose not to answer the questions in the poll. In the non-response bias situation, the sample group does mirror the population, but a person or persons in the sample group refused to participate.

Voluntary Response Bias occurs when anyone is permitted to choose to respond to a general invitation such is the case with radio call-in surveys; write in surveys; internet polls. The problem with this type of data collection is that it tends to over-represent people with strong opinions because they are the only ones who care enough to answer the poll. The person in the survey chooses to participate rather than be randomly selected from a listing of the entire population. There is no method to choosing the sample group. The respondents choose themselves.

Response Bias results from questions that are embarrassing/sensitive or are Non-neutral or poorly worded questions which due to their phrasing tend to lead people to a particular response. We minimize the chance of response bias by carefully wording and field testing questions. If a question is sensitive or embarrassing the respondent may choose to lie. Poorly worded questions tend to influence the responses of individuals.

Example of a sensitive question where someone might be prone to lie:

Coach Ham asks the team if anyone one of them had stayed out partying that weekend. Of course, none of the athletes were.

Examples where the wording of the questions influenced the response:

Are you in favor of providing school lunches for children that do not have enough to eat so that they have a chance to have a normal life?

Are you in favor of the government raising your taxes and taking your money away to pay for food for people who don't work? Obviously, the two questions will result in different responses.
\qquad

Notes: Bias Scenarios

Scenario 1: Interested in determining the percent of the population who believed in God, a surveyor stood outside a church on Sunday morning and asked all of the congregates a neutrally worded question about whether or not they believe in God. Will this survey produce biased results? Explain.

2008 Question 2: A local school board plans to conduct a survey of parents' opinions about year-round schooling in elementary schools. The school board contacts 500 of the families by mail. The survey question is provided below.

A proposal has been submitted that would require students in elementary schools to attend school on a year-round basis. Do you support this proposal? (Yes or No)

The school board received responses from 98 of the families, with 76 of the responses indicating support for year-round schools. Based on this outcome, the local school board concludes that most of the families with at least one child in elementary school prefer year-round schooling.
a. What type of bias is included in this survey?
b. Could we just contact another 500 families and add their data to the original results?
c. Name 2 ways to address the bias in this survey?
\qquad

Notes: Bias Scenarios

2004 Form B Question 2: At a certain university, students who live in the dormitories eat at a common dining hall. Recently, some students have been complaining about the quality of the food served there. The dining hall manager decided to do a survey to estimate the proportion of students living in the dormitories who think that the quality of the food should be improved. One evening, the manager asked the first 100 students entering the dining hall to answer the following question.

Many students believe that the food served in the dining hall needs improvement. Do you think that the quality of food served here needs improvement, even though that would increase the cost of the meal plan?

$$
\text { _____ No } \quad \text { No opinion }
$$

(a) In this setting, explain how bias may have been introduced based on the way this convenience sample was selected.
(b) In this setting, explain how bias may have been introduced based on the way the question was worded
(c) How could the question_have been worded differently to avoid that bias?
\qquad

Notes: Sampling Error

Recall that we defined statistics as the study of how to collect, organize, display, describe, and analyze the data from a sample in order to make generalizations about a population parameter of interest. Also remember that the parameter is a numerical measurement of a population which could be the mean, median, variance, range, percent...etc. From the sample, or subset of the population, we find estimates of population parameters. The estimate of a population parameter that comes from a sample is known as a sample statistic and is often referred to as a statistic. Thus, we talk about the sample mean, or sample median or sample variance...etc. being estimates or approximations for the corresponding population parameters.

For instance, if I wanted to know the true number of hours that Reagan students sleep on average per week, I could find an estimate by taking a sample 50 Reagan students. If I took a "good sample" one that represents the population at Reagan, my findings should be pretty close to the actual number of hours that are slept per night. However, the value I calculated from my sample is likely to differ somewhat from the actual number of hours slept. The difference between my sample statistic and the population parameter is known as sampling error or sampling variation.

More specifically, Sampling Error or Sampling Variation is variation due to random chance and can be described by a probability model and can be minimized by increasing the size of the sample. Sampling error is the recognition that every randomly selected sample from a population is likely to be different. Because there are so many variables or factors within a population, it is nearly impossible to design studies that account for every variable without drawing a census, which in itself is difficult, if not impossible. Because we cannot account for all of the variables, we involve chance in the selection of our sample to equalize the effects of variables that could not be accounted for. Even with a well-designed study or experiment, the sample statistic is only an estimate of the population parameter. The difference between the two is known as sampling error.

Recall that when we ran our simulations, there were multiple approaches that were all considered acceptable and led to different responses. However as we increased the sample size, the amount of variation in our responses decreased. It makes sense that if we increase our sample size that our result would be closer to the true population parameter. We can say that as we increase our sample size that the difference between the population parameter and the sample statistic will be less and that leads us to say that the amount of variation diminishes as our sample size increases. Obviously, our observations may be more varied as the sample size increases, but on average the sample statistics will vary less.

Caution: Please do not confuse sampling error with Bias. Sampling error is a term used to describe properly collected data that didn't actually match the population. In other words, given a proper method of data collection was employed, I would expect that my sample will vary or differ from the population the amount of variation or difference of a sample from the population is error. Error is normal and is predictable and therefore can be controlled. The best way to minimize sampling error/sampling variation is by increasing the sampling size.

Unlike sampling error, bias is problem in the design and/or method of collecting data. Increasing sample size will not fix biased data. Biased data cannot be fixed and must be discarded. To eliminate bias, we must carefully plan and execute how we collect our data.
\qquad

Notes: Observational Studies \& Randomness

Obviously, it is important to collect samples that are representative of the population and by now you should be asking yourself: "how do we do that?" One primary method used to collect samples is the Observational Study. Observational studies are studies in which we gather data about subjects doing what they are already doing. The research of historical records or medical records and surveys are examples of observational studies. Most data is collected through observational studies. Observational studies do NOT assign treatments. Because treatments are not assigned, causation cannot be proved. However, observational studies can be statistically significant and can demonstrate a relationship, association or a correlation.

Note: Only Experiments should be used to establish cause and effect relationships. Most data is collected by observational study and not by controlled experiments.

A common type of observational study is the survey of which there are several types including:

- The Census
- The Convenience Sample
- The Simple Random Sample
- The Systematic Sample
- The Cluster Sample
- The Stratified Sample

The Census: As we discussed earlier, a census involves the collection of data from each unit in the population. Unfortunately, a census is often impractical if not impossible to perform. On the positive side, if we perform an accurate census, we will have the population parameter of interest and inference procedures will not be necessary.

The Convenience Sample: The convenience sample is a sampling technique which selects subjects because of their convenient accessibility and proximity to the researcher. Convenience samples are rarely representative of the population and not every subject in the population has an equal chance of being selected. As a consequence, convenience sample findings are most often of no value, however, they are easy to perform if you are interested in collecting worthless data. In other words, avoid them.

The purpose of Randomness.

Recall that we want our samples to be representative of the population and that means we would desire that we would like every combination of traits to be proportionally represented in our sample. Unfortunately, if we really break it down, we are all unique individuals. Thus if we were to represent every combination of traits, we would need to perform a census and sample everyone. As we discussed previously, this is impractical if not impossible.

So how do we address the problem? The answer is the introduction of chance or randomness. Statisticians and mathematicians have found that randomness, tends to equalize the variations that we can't account for in our studies.

So you don't believe me. Try the exercise on the next page.

