Recipe for Success: 2-Sample Proportions Confidence Interval

1. Define $p_1 \& p_2$ in context (the population proportions)

2. Write the Conditions

(must be for both sets of data)

3. Write the Equation

$$\widehat{p}_1 - \widehat{p}_2 \pm z^* \sqrt{rac{\widehat{p}_1 \widehat{q}_1}{n_1} + rac{\widehat{p}_2 \widehat{q}_2}{n_2}}$$

4. List the Values

10.

- **p**₁ = the population **proportion** for the 1st proportion P_2 = the population **proportion** for the 2nd proportion
 - **Independent Random Samples**
 - np̂ ≥ 10
 - n**q** ≥ 10
 - n is less than 10% of the population $\frac{n}{1}$

z = the number of standard deviations a value is from the center **n**₁ = the size of the sample of the 1st proportion x₁ = the number of outcomes of interest of the 1st proportion \widehat{p}_1 = $\frac{x_1}{n_1}$ 1st sample proportion of interest n_2 = the size of the sample of the 2nd proportion x_2 = the number of outcomes of interest of the 2nd proportion $\hat{p}_2 = \frac{x_2}{n_2}$ 2nd sample proportion of interest • 2nd Vars 5. Calculate z* Inverse Norm • Area = $\frac{(1-Confidence\ level)}{2}$ • μ = 0 and σ = 1 6. Plug in the values 7. Calculate the Interval Stat Tests 2-PropZInt • x_1 comes from the problem or the data • n1 comes from the problem or the data • x_2 comes from the problem or the data • n_2 comes from the problem or the data • C-Level Confidence level comes from the problem 8. Write the interval 9. Write the Conclusion We are _____% confident that the true population proportion difference between Restate the definition of the p_1 and ______ lies within the interval ______ Restate the definition of the p_2 Determining significance. • If 0 is in the interval—There is No significant difference • If 0 is not in the interval-There Is a significant difference

Recipe for Success: 2-Sample Proportions Hypothesis Test

1. Write your Hypothesis

• Null $H_0: p_1 = p_2$

- Alternative H_A : $p_1 \neq$ or < or > p_2
- 2. Define $p_{1\&} p_{2}$ in context
- 3. Write the Conditions

(must be for both sets of data)

4. Write the Equations

$$z = \frac{\widehat{p}_1 - \widehat{p}_2}{\sqrt{\frac{(\widehat{p}_c)(\widehat{q}_c)}{n_1} + \frac{(\widehat{p}_c)(\widehat{q}_c)}{n_2}}}$$

$$\widehat{p}_c = \frac{x_1 + x_2}{n_1 + n_2}$$

- 5. List & Label all of input values Calculate \hat{p}_1 & \hat{p}_2 & \hat{p}_c & \hat{q}_c
- 6. Plug values into the equation

8. State the Decision

9. Write The Conclusion

7. Calculate the z and the p-value

• **p**₁ = the population **proportion** for the 1st proportion

- P_2 = the population **proportion** for the 2nd proportion
- Independent Random Samples
- n is less than 10% of the population $\frac{n}{1}$
- np̂ ≥ 10
- nĝ ≥ 10
- z = the number of standard deviations a value is from the center **n**₁ = the size of the sample of the 1st proportion
- x_1 = the number of outcomes of interest of the 1st proportion
- $\hat{p}_1 = \frac{x_1}{n_1}$ 1st sample proportion of interest
- n_2 = the size of the sample of the 2nd proportion
- x_2 = the number of outcomes of interest of the 2nd proportion
- $\widehat{p}_2 = \frac{x_2}{n_2}$ 2nd sample proportion of interest
- \widehat{p}_c = the 2 combined or pooled proportion successes
- $\hat{q}_c = 1 \hat{p}_c$ the 2 combined or pooled proportion successes
 - Stat Tests
 - 2-proportion z-test
 - $x_1 \& x_2$ comes from the problem or the data
 - **n**₁ & **n**₂ comes from the problem or the data
 - Choose ≠ or < or >
 - The p-value is_____
 - If the p-value is less than alpha, Reject the Null
- If the p-value is greater than alpha, Fail to reject the Null
- Reject the Null: Our p-value is _____. We reject the Null. There is sufficient evidence

alpha = _____ to suggest that the true population proportion ______ is Restate the definition of the p_1

Fail to Reject the Null: Our p-value is _____. We Fail to reject the Null. There is not sufficient evidence at alpha = _____ to suggest that the true population proportion for is ________ than the true population proportion for Restate the definition of the p_1 Restate $H_A \neq$ or < or >

Restate the definition of the p_2