Recipe for Success: 2-Sample Proportions
 Confidence Interval

1. Define $p_{1} \& p_{2}$ in context (the population proportions)
2. Write the Conditions
(must be for both sets of data)
3. Write the Equation
$\widehat{p}_{1}-\widehat{p}_{2} \pm z^{*} \sqrt{\frac{\widehat{p}_{1} \widehat{q}_{1}}{n_{1}}+\frac{\widehat{p}_{2} \widehat{q}_{2}}{n_{2}}}$
4. List the Values
$\boldsymbol{p}_{1}=$ the population proportion for the $1^{\text {st }}$ proportion
$P_{2}=$ the population proportion for the $2^{\text {nd }}$ proportion

- Independent Random Samples
- $n \widehat{p} \geq 10$
- $n \widehat{q} \geq 10$
- n is less than 10% of the population $\frac{n}{.1}$
$z=$ the number of standard deviations a value is from the center
$n_{1}=$ the size of the sample of the $1^{\text {st }}$ proportion
$x_{1}=$ the number of outcomes of interest of the $1^{\text {st }}$ proportion
$\widehat{p}_{1}=\frac{x_{1}}{n_{1}} 1$ st sample proportion of interes \dagger
$n_{2}=$ the size of the sample of the $2^{\text {nd }}$ proportion
$x_{2}=$ the number of outcomes of interest of the $2^{\text {nd }}$ proportion
$\hat{\boldsymbol{p}}_{2}=\frac{\boldsymbol{x}_{2}}{n_{2}} 2$ nd sample proportion of interest
- $2^{\text {nd }}$ Vars
- Inverse Norm
- Area $=\frac{(1-\text { Confidence level })}{2}$
- $\mu=0$ and $\sigma=1$

6. Plug in the values
7. Calculate the Interval

- Stat Tests
- 2-PropZInt
- x_{1} comes from the problem or the data
- n_{1} comes from the problem or the data
- x_{2} comes from the problem or the data
- n_{2} comes from the problem or the data
- C-Level Confidence level comes from the problem

8. Write the interval
9. Write the Conclusion

We are \qquad \% confident that the true population proportion difference between and \qquad lies within the interval \qquad .

Recipe for Success: 2-Sample Proportions
 Hypothesis Test

1. Write your Hypothesis

- Null $H_{0}: p_{1}=p_{2}$
- Alternative $H_{A}: p_{1} \neq$ or < or > p_{2}

2. Define $p_{1} \& p_{2}$ in context
3. Write the Conditions
(must be for both sets of data)

- $\boldsymbol{p}_{1}=$ the population proportion for the $1^{\text {st }}$ proportion
- $P_{2}=$ the population proportion for the $2^{\text {nd }}$ proportion
- Independent Random Samples
- n is less than 10% of the population $\frac{n}{1}$
- $n \widehat{p} \geq 10$
- $\mathbf{n \widehat { q }} \geq 10$

4. Write the Equations

$$
\begin{gathered}
z=\frac{\widehat{p}_{1}-\widehat{\boldsymbol{p}}_{2}}{\sqrt{\frac{\left(\hat{\boldsymbol{p}}_{c}\right)\left(\widehat{\boldsymbol{q}}_{c}\right)}{n_{1}}+\frac{\left(\hat{p}_{c}\right)\left(\widehat{\boldsymbol{q}}_{c}\right)}{n_{2}}}} \\
\hat{\boldsymbol{p}}_{c}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}
\end{gathered}
$$

$z=$ the number of standard deviations a value is from the center
$n_{1}=$ the size of the sample of the $1^{\text {st }}$ proportion
$x_{1}=$ the number of outcomes of interest of the $1^{\text {st }}$ proportion
$\widehat{p}_{1}=\frac{x_{1}}{n_{1}} 1$ st sample proportion of interest
$n_{2}=$ the size of the sample of the $2^{\text {nd }}$ proportion
$x_{2}=$ the number of outcomes of interest of the $2^{\text {nd }}$ proportion
$\widehat{\boldsymbol{p}}_{2}=\frac{x_{2}}{n_{2}} 2$ nd sample proportion of interest
$\widehat{\boldsymbol{p}}_{\boldsymbol{c}}=$ the 2 combined or pooled proportion successes
$\widehat{\boldsymbol{q}}_{c}=1-\widehat{\boldsymbol{p}}_{c}$ the 2 combined or pooled proportion successes
5. List \& Label all of input values

Calculate $\hat{\boldsymbol{p}}_{1} \& \hat{\boldsymbol{p}}_{2} \& \widehat{\boldsymbol{p}}_{c} \& \widehat{\boldsymbol{q}}_{c}$
6. Plug values into the equation
7. Calculate the z and the p-value

8. State the Decision

9. Write The Conclusion

Reject the Null: Our p-value is \qquad . We reject the Null. There is sufficient evidence alpha = \qquad to suggest that the true population proportion

Restate the definition of the p_{1} is

- Stat Tests
- 2-proportion z-test
- $x_{1} \& x_{2}$ comes from the problem or the data
- $n_{1} \& n_{2}$ comes from the problem or the data
- Choose \neq or < or >
- The p-value is \qquad
- If the p-value is less than alpha, Reject the Null
- If the p-value is greater than alpha, Fail to reject the Null
\qquad
Restate $H_{A} \neq$ or < or > true population proportion

Restate the definition of the p_{2} -

Fail to Reject the Null: Our p-value is \qquad . We Fail to reject the Null. There is not sufficient evidence at alpha = \qquad to suggest that the true population proportion for
\qquad than the true population proportion for

