Test	Conditions	Hypothesis Test	Confidence Interval	Calculator	Operations
Z-Test σ is known	 Provided σ - The standard deviation of the population Random Sample n < 10% of the population Normal Population or n > 30 If data is given, draw a boxplot or histogram-to show normality 	$z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$	$\overline{x} \pm z^* \frac{\sigma}{\sqrt{n}}$	Note: May use 2 nd	σ) to find the p-value,
T-Test σ is unknown Must use (s) the sample deviation	 Random Sample n < 10% of the population Normal Population or n > 30 If data is given, draw a boxplot or histogram-to show normality 	$t=rac{\overline{x}-\mu}{rac{S}{\sqrt{n}}}$ with df = n - 1	$\overline{x} \pm t^* rac{s}{\sqrt{n}}$ with df = n-1	Hypothesis STAT TESTS T-Test	Confidence Interval STAT TESTS T Interval
Paired Sample T-Test	 Paired Data Assumption Random Sample n < 10% of the population Differences are 	$t = \frac{\overline{x}_d - \mu}{\frac{S_d}{\sqrt{n}}}$ with df = n - 1	$\overline{x}_d \pm t^* \frac{s_d}{\sqrt{n}}$ with df = n - 1	Hypothesis STAT TESTS T-Test	Confidence Interval STAT TESTS T Interval
n is the number of pairs	independent 5. Normal Population or n > 30 If data is given, draw a boxplot or histogram-to show normality	\overline{x}_d the average of the differences of the sample means	$\boldsymbol{S_d}$ the standard deviation of the differences of the means	If data is given, enter 1^{st} set of data in L_1 and enter 2^{nd} set into L_2 . At the top of L_3 type $2^{nd} L_1 - 2^{nd} L_2$. Then set the test to select L_3 .	
Difference of 2 means σ is unknown	 Both samples are random n < 10% of the population Populations are independent Normal Population or n > 30 If data is given, draw a boxplot or histogram-to show normality 	$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ df from calculator	$\overline{x}_1 - \overline{x}_2 \pm t^* \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$ df from calculator	Hypothesis STAT TESTS 2-Samp T-Test	Confidence Interval STAT TESTS 2-Samp T Int
Linear Regression $\hat{y} = \overline{y} + b(x - \overline{x})$	 Random Sample Linear Scatterplot No pattern in residual plot Residual distribution is normal 	$t = \frac{b}{s_b}$ with df = n-2	$b \pm t^* s_b \text{ with } df = n-2$ $s_b = \frac{s_e}{s_x \sqrt{n-1}}$ $S \text{ or } s_e = \sqrt{\frac{\Sigma(y-\hat{y})^2}{n-2}}$		Confidence Interval STAT TESTS Lin Reg T Int er independent (x) in L ₁ ito L ₂ .

Test	Conditions	Hypothesis Test	Confidence Interval	Calculator Operations	
Test for Proportions	 Random Sample n < 10% of the population np & nq > 10 Normal Population or n > 30 	$z = \frac{\widehat{p} - p_0}{\sqrt{\frac{(p_0)(q_0)}{n}}}$	$\widehat{p} \pm z^* \sqrt{rac{(\widehat{p})(\widehat{q})}{n}}$	HypothesisConfidence IntervalSTATSTATTESTSTESTS1-Prop Z Test1-Prop Z IntNote:May use 2^{nd} VARS normal cdf(lower, upper, mean, σ) to find the p-value	
Difference of 2 Proportions	 Random Sample n < 10% of the population np & nq > 10 Normal Population or n > 30 	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_c(\hat{q}_c)(\frac{1}{n_1} + \frac{1}{n_2})}}$ $\hat{p}_c = \frac{\overline{x}_1 + \overline{x}_2}{n_1 + n_2}$	$\widehat{p}_1 - \widehat{p}_2 \pm z^* \sqrt{rac{\widehat{p}_1 \widehat{q}_1}{n_1} + rac{\widehat{p}_2 \widehat{q}_2}{n_2}}$	HypothesisConfidence IntervalSTATSTATTESTSTESTS2-Prop Z TestT Interval	
Chi-Squared Goodness of Fit Comparing Distributions	 1-sample with 1 variable 2. Random Sample 3. n<10% of the population 4. All expected values > 5 5. Counted data for observed 	$\chi^{2} = \frac{(obs - exp)^{2}}{exp}$ with df = n-1 where n is the number of categories	Confidence Interval Does not Apply	Hypothesis STAT TESTS χ^2 GOF-Test If data is given, enter observed in L ₁ and expected into L ₂ .	
Chi-Squared Test of Independence	 1-sample with 2 variables 2. Random Sample 3. n<10% of the population 4. All expected values > 5 5. Counted data for observed 	$\chi^{2} = \frac{(obs - exp)^{2}}{exp}$ with df = (r-1)(c-1) r= the number of rows c= number of columns	Confidence Interval Does not Apply	Hypothesis STAT TESTS χ^2 -Test For data: Observed: 2 nd matrix \rightarrow Edit \rightarrow [A] Expected: 2 nd matrix \rightarrow Edit \rightarrow [B]	
Chi-Squared Test of Homogeneity	 2-sample with 1 variable Random Sample n<10% of the Population All expected values > 5 Counted data for observed 	$\chi^{2} = \frac{(obs - exp)^{2}}{exp}$ with df = (r-1)(c-1) r= the number of rows c= number of columns	Confidence Interval Does not Apply	Hypothesis STAT TESTS χ^2 -Test For data: Observed: 2 nd matrix \rightarrow Edit \rightarrow [A] Expected: 2 nd matrix \rightarrow Edit \rightarrow [B]	