Recipe for Success: Definition Template for Regression

Slope $\beta_{1}=b=\frac{\Delta y}{\Delta x} \quad$ (using $y=a+b \times$ notation)

> Value of the slope
is the expected amount of change in \qquad for a 1 unit increase in

Restate the definition of x.
y - Intercept $\beta_{0}=a=$ constant (using $y=a+b x$ notation)
We would expect to have $\overline{\text { Value of } y \text {-intercept }} \frac{\text { Restate the definition of } y}{}$ if the
amount of $\frac{\text { zero. }}{\text { Restate the definition of } x}=$
Correlation Coefficient $(r)=\sqrt{R^{2}}$

- $|r| \geq .75 \quad$ There is a strong \quad linear relationship between
$\overline{\text { Restate the definition of } y}{ }^{\text {and }} \overline{\text { Restate the definition of } x}$
- . $40<|r|<.75$ There is a moderately strong \qquad linear
(+ or -)--use the sign of the slope
relationship between and \qquad
- $|r|<.40 \quad$ There is a weak \qquad linear relationship between
(+ or -)--use the sign of the slope
Restate the definition of Y and

Restate the definition of x

Coefficient of Determination $\left(R^{2}\right)$

\qquad \% of the variation in the \qquad can be explained by Restate the definition of Y
changes in the

$$
\text { Restate the definition of } x
$$

S
The standard deviation of the residuals is \qquad and measures the variance in
$S=\sqrt{\frac{\sum x^{2}}{(n-2)}} \quad \frac{\text { Restate the definition of } Y}{}$ for a given amount of $\overline{\text { Restate the definition of } x}$.

Standard Error of the Slope:

The standard error of the slope is \qquad . Because the slope is estimated from the sample, other samples are likely to have differing slopes. The standard error of the slope quantifies the amount of variation in sample slopes that could be expected from different samples.

An Example Computer Print-Out

Before Challenger went of at $31^{\circ} \mathrm{F}$, each of the 23 earlier launches experienced from zero to three O-ring failures. There was some speculation that the number of O-ring failures was related to the temperature at lift-off. A computer printout, performed too late, is shown below.

Source	df	SS	MS	F
Regression	1	4.30166	4.30166	9.66
Residual	21	9.35052	0.445263	
Variable	Coef	s.e. Coeff	t	P
Constant	4.79365	1.409	3.4	0.0027
Temperature	-0.0626587	0.02016	-3.11	0.0052
$s=.06673$		R-sq $=31.5 \%$	R-sq $(a d j)=28.2 \%$	

Explanatory Variable (x): Temperature

Response Variable (y): The number of o-ring failures

Least Squares equation: fâlures $=4.79365+(-0.0626587)$ (temperature)
Slope: $\frac{-0.062587(\text { failures })}{1 \text { Temperature }}$
We would expect a 0.062587 decrease in o-ring failures for every 1 degree increase in temperature.
y-intercept: 4.79365
We would expect to have 4.79365 o-ring failures if the temperature was zero degrees
Correlation Coefficient: $r=-\sqrt{.315}=-.5612$ (r is negative because the slope is negative)
There is a moderately strong negative linear relationship between the amount of o-ring failures and temperature.

Coefficient of Determination: R-sq $=31.5 \%$ or $R^{2}=31.5 \%$

31.5% of the variation in the number of 0 -ring failures can be explained by changes in temperature.

Standard Deviation of the Residuals: . 06673

The standard deviation of the residuals is .06673 and measures the amount of variation in o-ring failures that we can expect for a given temperature.

Note: Residuals = the number of actual o-ring failures - the predicted number of failures.
Residuals are the vertical distance an observed value is from the predicted.
Remember: A residual plot needs to be random and with no pattern for a given equation to be appropriate

Standard Error of the Slope: . 02016
The standard error of the slope is 02016. Because the slope is estimated from the sample, other samples are likely to have differing slopes. The standard error of the slope quantifies the amount of variation in sample slopes that could be expected from different samples.

Recipe for Success: The Regression, Scatterplot \& Residual Graphs

1. Turn on STAT Diagnostics	- Press MODE - \downarrow STATDIAGNOSTICS: - \rightarrow Highlight ON - Press ENTER - Press $2^{\text {nd }}$ Mode/Quit
2. Input the Data	- Enter " x " values into L_{1} - Enter " y " values into L_{2}
3. Calculate the Regression Statistics - Regression Equation $y=a+b x$ - Slope: $B_{1}=b$ - Y-intercept: $B_{0}=a$ - Correlation Coefficient: r - Coefficient of Determination: \mathbf{r}^{2}	- Press STAT \rightarrow Highlight CALC - \downarrow 8: LinReg $(a+b x)$ - \downarrow XList: Press $2^{\text {nd }} L_{1}$ Enter - \downarrow YList: Press $2^{\text {nd }} L_{2}$ Enter - \downarrow Store RegEQ: Press $2^{\text {nd }}$ ALPHA TRACE ENTER - Press $2^{\text {nd }}$ Mode/Quit
4. Graphing: Scatter Plot vs. Regression Equation	- Press $2^{\text {nd }}$ STAT PLOT - Highlight 1: Plot 1 Press ENTER - Highlight On Press ENTER - \downarrow Highlight First Graph Press ENTER - \downarrow XList: Press $2^{\text {nd }} L_{1}$ Enter - \downarrow YList: Press $2^{\text {nd }} L_{2}$ Enter - Press ZOOM 9
5. Calculating Predicted Values Caution: Do not make predictions outside the range of x-values.	- Press $2^{\text {nd }}$ TABLESET - Input x-value - Press $2^{\text {nd }}$ TABLE - OR Input an x value into the equation and solve for y
6. Residuals: The vertical distance from a given data point to the line of best fit	- A positive residual means the actual is greater than the predicted-above the regression line - A negative residual means the actual is less than the predicted-below the regression line
7. Calculating Residuals (actual - predicted)	- Press STAT \rightarrow Highlight EDIT \& Press ENTER - \uparrow Highlight L_{3} - Press $2^{\text {nd }}$ STAT/LIST - \downarrow Highlight 7 RESID Press ENTER - Press ENTER again - Press ZOOM 9
8. Graphing Residuals (actual - predicted)	- Press $2^{\text {nd }}$ STAT PLOT - Highlight 1: Plot 1 Press ENTER - Highlight On Press ENTER - \downarrow Highlight First Graph Press ENTER - \downarrow XList: Press $2^{\text {nd }} L_{1}$ Enter - \downarrow YList: Press $2^{\text {nd }} L_{3}$ Enter - Press ZOOM 9

