Recipe for Success: Type I Errors

Type I Error-The probability of Rejecting the null given that the null is True.

- 1. Write the Hypothesis α = the probability of committing a Type I error
 - Null H₀: β = the probability of committing a Type II error
 - Alternative H_A : 1- β = the power of the test
- 2. Define parameter (μ or p) in context

3. Define a Type I Error α	Definition: The probability of rejecting the Null given that the Null
Remember: To commit a Type I Error, we must have rejected the null and were incorrect	is true.
	simplified definition: Rejecting a true Null and Accepting a False Alternative
4. Explain a Type I Error in Context of the problem	In this case, the probability of rejectingin favor of Restate H_0
	given the factis true. Restate H_A Restate H_0
5. Explain the consequences of Committing a Type I Error	The consequences for committing at Type I Error are
	Explanation must be in the context and in simplified language.
Methods of Decreasing Type I Errors- α	 Decrease α - the level of significance Increases β-the probability of a Type II Error More likely to accept a false null-(this is an error) Power Decreases
In General:	2. Decrease Power
As α ↓, power ↓, & β ↑	 More likely to accept a false null—(Type II increases: negative)
And	 Less likely to reject a true null—(Type I decreases: positive)
As α ↑, power ↑, & β ↓	 3. Increase Sample Size Decreases Type II Error Increases Power (Costs money and Time)
P-value	
1. Write the Hypothesis	

. Write the rippot

- Null H₀:
- Alternative H_A:
- 2. Define parameter (μ or p) in context
- 3. Define P-value
 - lue P-value is the probability of getting a test statistic as extreme or more extreme given that the null is true.
- 4. Explain P-value in the Context of the problem
- There is a _____% chance that we would get a test statistic *P-value*

this extreme in favor of _____ when in fact _____ is true Restate H_A when in fact _____ Restate H_0

Recipe for Success: Type II Errors

Type II Error-The probability of Accepting the null given that the null is False.

- 1. Write the Hypothesis α = the probability of committing a Type I error •
 - Null Ho: β = the probability of committing a Type II error
 - Alternative **H**_ 1- β = the power of the test •
- 2. Define parameter (μ or p) in context

3. Define a Type II Error β Remember: to commit a Type II	Definition : The probability of accepting the Null given that it is false.
Error we failed to reject the null and were incorrect.	simplified definition : Accepting a False Null and Rejecting a True Alternative
4. Explain Type II Error in Context of the problem	In this case, the probability of acceptinggiven that Restate H ₀ is false andis true. Restate H ₀ Restate H _A
5. Explain the consequences of Committing a Type II Error	The consequences for committing a Type II Error are
	Explanation must be in the context and in simplified language.
Methods of Decreasing Type II Errors- β As $\beta \downarrow$, power \uparrow , & $\alpha \uparrow$	 Increase α - the level of significance Increases-the probability of a Type I Error α More likely to reject a True Null—(this is an error) Power Increases
And	. Increase Power
As $\beta \uparrow$, power Ψ , & $\alpha \Psi$	 More likely to reject a true null—(Type I increases: negative) Less likely to accept a false null—(Type II decreases: positive)
	 4. Increase Sample Size Decreases Type II Error Increases Power (Costs money and Time)
	P-value
 Write the Hypothesis Null H₀: 	

- Alternative H_A:
- 2. Define parameter (μ or p) in context
- 3. Define P-value

P-value is the probability of getting a test statistic as extreme or more extreme given that the null is true.

4. Explain P-value in the Context of the problem There is a _____% chance that we would get a test statistic *P-value*

this extreme in favor of _____ when in fact _____ is true Restate H_A ____ Restate H_0